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AhstracL The disordered ground-state propelties of a double-layer quanhun antifemmagnet 
are investigated in the bond operator representation. The intralayer and interlayer couplings are I 
and 3.~ ,  respectively. In a mean-field approximation, we obtain a spin gap which decreases with 
increasing ratio A = 3/31 and disappem at the value = 0.292. In the region 0 < A < IC. 
we calculate the disordered ground-sme e n e w .  the inmalayer and interlayer nearest-nei&bour 
singlet strengths, and the correlation length. 

1. Introduction 

There is an intimate connection between antiferromagnetism and superconductivity in 
layered copper oxide compounds; the S = 4 square-lattice antiferromagnetic copper- 
oxygen planes might be a vital component of the mechanism of high-temperature 
superconductivity [1,2]. In most high-T, materials the appearance of superconductivity is 
almost accompanied by the disappearance of the antiferromagnetic long-range order [3,4]. It 
was recently suggested [5-7] that the unusual normal-state magnetic properties of the high- 
T, superconducting cuprates are characteristic of two-dimensional quantum antiferromagnets 
close to the critical point of a zero-temperature order-disorder transition. In the disordered 
phase there is an energy gap towards spin excitations. In order to obtain the critical point, 
Sachdev and Bhatt [8] introduced a new representation of S = f quantum spins in terms 
of the bond operator to study the two-dimensional antiferromagnetic system and found 
that the magnetically disordered columnar dimerization phase was stable for the ratio Ac 
of intradimer to interdimer coupling strength less than 0.46. Katoh and Imada [9] also 
investigated the phase diagram of the S = antiferromagnetic Heisenberg model on a 
dimerized square lattice using the quantum Monte Carlo simulations and found that the spin 
gap appeared above A, = 0.538. 

In LazCu04 the basic structural unit is a single CuOz plane, weakly coupling to the 
other CuOz planes. Unlike La2Cu04, in YBazCu30s+, the basic stnrctural unit is a pair of 
CuO2 planes, separated from the next pair of CuOz planes by the relatively inert CuO chains 
[IO]. Investigation of the two-layer quantum Heisenberg antiferromagnet relates closely to 
the superconducting mechanism of the YBazC~30g+~ series. When the interplane coupling 
JL = 0, each of the two independent planes has long-range order at T = 0 and the spectrum 
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is gapless. However, for a small ratio A = J / J l  of the intralayer and interlayer coupling, 
there is a tendency for the neighbouring spins in adjacent planes to form singlets, and there 
is a gap for spin-I excitations and no long-range order. The critical coupling A, at which the 
spin gap disappears was calculated by various methods. Hida obtained the critical coupling 
Ac = 0.236 by the modified spin-wave method [ I  11, and Ac = 0.391 by the series expansion 
method [12]. Millis and Monien [13] gave he = 0.223 by the Schwinger boson mean-field 
calculation. Sandvik and Scalapino [I41 found that A, = 0.398 by the modification of the 
Handscomb quantum Monte Carlo algorithm. In these references there are no systematic 
investigations of the properties of disordered ground state in the doublelayer quantum 
antiferromagnet. 

The purpose of this paper is to investigate the disordered ground-state properties of a 
double-layer dimerized Heisenberg antiferromagnet in the bond operator representation. In 
section 2 we shall give the model Hamiltonian in the bond operator representation, derive 
the equation of motion for the retarded Green function and give the analytical expressions 
for the spin gap, the ground-state energy and the related physical quantities. The results of 
numerical calculation and discussion are given in section 3. The last section 4 is devoted 
to a summary. 

Guo-Zhu Wei and An Du 

2. Hamiltonian and analytical results 

Let us consider the double-layer square lattice Heisenberg model; the intralayer and the 
interlayer nearest-neighbour antiferromagnetic couplings are J and J I ,  respectively. The 
Hamiltonian is as follows: 

where (i, j )  is a pair of nearest-neighbours in each layer, and Sm; is a spin-; operator at 
site i in layer m (m = 1 or 2 indicates the two layers). The lattice constant is taken to be 
equal to unity With the interlayer coupling JI = 0, each of the two independent layers 
has long-range order at T = 0. For a small J / J l  ratio, the nearest-neighbour spins on 
different layers form a singlet pair; thus in the two-layer structure, dimerization may occur 
in a perpendicular direction to planes, and the antiferromagnetic long-range order should be 
suppressed. 

The spin-wave analysis cannot be used to study the dimerization phase; instead we use 
the bond operator representation for quantum S = $ spins [8]. In this representation, two 
spins SI and ST are placed on a pair of nearest-neighbour sites in the two layers. The four 
states in the Hilbert space can be combined to form a singlet state Is) and three triplet states 
I f x ) ,  Ity) and Itr). The single and triplet creation operators are defined as follows: 

1 
S+IO) =Is) = -(I t L )  - I L t ) )  Jz 
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A representation of the spins Sli and S, in terms of these singlet and triplet operators is 
given by 

S I ,  = z(s I +  r, + ta + s - ic,pytB+ty) 
I +  + (2.3) s, = ?(-s te - t, s - iE.pyta+ty) 

where a, p and y represent the components along the x ,  y and z axes. respectively, repeated 
indices are summed over and E is the totally antisymmetric tensor. The restriction that the 
physical states are either singlet or triplet leads to the constraint 

s+s+t,+r, = I .  (2.4) 

Taking the singlet and triplet operators at each site to satisfy the bosonic commutation 
relations and, using equations (2.3) and (2.4). one can reproduce the spin-4 S U ( 2 )  algebra 
of the spins Sli and Szi. 

Substituting equations (2.3) and (2.4) into equation (Z.l), we can rewrite the Hamiltonian 
as follows: 

A +- x ( 1  - spy)(t;frt&,tjy - t$$rytjv + HC) (2.5) 

where A = J / J I .  and p = ~ L / J L .  The chemical potential /I is introduced to impose the 
constraint of equation (2.4). According to 18,151, we take (sj) = S, which means that the s 
bosons are condensed, omit the thud term on the right-hand side of equation (2.5) because 
it does not change the results significantly even for A = 1 [15] and perform the Fourier 
transformation of the operators t: = (l/n) Ck t& exp(ikrj), where N is the total number 
of sites in each layer. Thus we finally obtain the mean-field Hamiltonian as follows: 

(id 

where 

A(k)  = 4 - j2 + hS2qk 

B ( k )  = AS2qk 
(2.7) 

with qk = COS k, f cos ky .  
In order to calculate the energy of the ground state and related physical quantities, we 

define the following retarded function: 

Using the technique of the equation of motion for the Green function, we obtain the solution 
of the Green function: 

(2.9) 

where 

wk = JIJA(k)z  - B(k)'. (2.10) 
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Using the spectral theorem and equation (2.9), we obtain the correlation functions 

and the ground-state energy per site 

(2.1 1) 

(2.12) 

The mean-field parameter 5 and the chemical potential F are determined by using the 
minimization condition of the ground-state energy: aE8/aS = 0, and a E g / a f i  = 0. Thus 
we obtain the self-consistent equations on S and p as follows: 

where 
2AS2 

0.25 -,E' 
D =  

(2.13) 

(2.14) 

(2.15) 

For each A, the self-consistent solutions of fi  and S are given by equations (2.13) and 
(2.14) and are used to determine the excitation spectrum of the spin-fxiplet state obtained 
from equation (2.10) as 

mk = J ~ ( 0 . 2 5  - p)-. (2.16) 

The dispersion relation of equation (2.16) can be parametrized to obtain the spin-wave 
velocity V, and the spin stiffness D, 

~ ~~ ~~ 

V, = Js(O.25 - , E ) a  (2.17) 
D 

4" 
D, = J~ (0 .25  - f i )  (2.18) 

The excitation spectrum (2.16) has a minimum at kx = k,, = K and the spin gap is 

(2.19) 

given by 

A = J1(0.25 - G ) m .  
Using the spin-wave velocity V, and the spin gap A,  we can calculate the intralayer 

spin-spin correlation length as [I51 

(2.20) 

Using equations (2.3) and (2.1 l),  we can also obtain the intralayer nearest-neighbour 
spin-spin correlation function 

(2.21) 
S2 

{ & i & j )  = 4'' + i p ' I 2  
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where 

(2.22) 

(2.23) 

and the interlayer nearest-neighbour spin-spin correlation function 
(S l iS2i )  = 0.25 - s*. (2.24) 

3. Computation results and discussion 

In figure 1, we present the result of the spin gap as a function of h obtained from 
equation (2.19). From figure 1, we can see that the spin gap decreases with increasing 
value of h and becomes zero at A, = 0.292. The value of hc is larger than that given by 
both the modified spin-wave method [ 1 I] and the Schwinger boson mean-field method [ 131 
but is smaller than that given by both the series expansion method [12] and the quantum 
Monte Carlo method [14]. In the range 0 < h < Ac, the system is in a magnetically 
disordered phase and has a spin gap. At A = 0, the spin gap has the maximum value of 51, 
which is just equal to the energy difference between the triplet state and the singlet state of 
the two-spin-; system. 

a 
0.4 5ii!m 0.2 0.0 0 0 .1  0.2 0.3 0.4 

-037 7, 

x v x c  
Figure 1. The spin gap A as a function of h (= J f J l ) .  Figure 2. The disordered ground-state energy E, as a 

function of )./kc. 

In figures 2-7, the unit of the horizontal axis is normalized by A,. The curve of the 
disordered ground-state energy Eg versus A/Ac is shown in figure 2. At the critical coupling 
A,, the energy is -0.38951, which is smaller than that given by the modified spin-wave 
method in which it is -0.37151 [ l l ] .  The ground-state energy decreases with increasing 
value of A. 

Computation results of the spin velocity V, and the spin stiffness D$ versus h/hc are 
shown in figure 3 and figure 4, respectively. We see that the spin-wave velocity and spin 
stiffness decrease with decreasing h. At h = 0, V, = Ds = 0, it is easy to understand that 
there is no spin wave in the independent two-spin-; system. At the critical coupling hc, the 
spin-wave velocity is 1.8851; it is smaller than that obtained by the spin-wave theory for 
the two-layer system [141. 



8818 Cuo-Zhu Wei and An Du 

(13 0.3 

0 . 2  

0.1 ~~E?l 0.0 0 0.2 0.4 0.6 0 . 6  1.0 

~/’b 
0 0.2 0 . 4  0.6 0.8 1.0 

X/X, 

Figure 3. The spin-wave velocity C, as a function of 
A I L  .VAC.  

Figure 4. The spin-wave stiffness D, a a function of u-.lvi 1.0 

0.0 
0 0.2 0.4  0 . 6  0.8 1.0 

-am 
0 0.2 0.4 0.6 0.8 1.0 

X I X ,  X/X. 

Figure 5. The conelaion length E as a function of 
A I L .  

Flgure 6. The intralayer nearest-neighbour spin-spin 
correlation ( S l i S ~ j )  = (S~IS~,) as a function of A 1 . b  

The computation result of the correlation length 5 versus A/AC is shown in figure 5. We 
see that the correlation length increases with increasing A. At the critical coupling A, the 
correlation length is infinite: it is a feature of the antiferromagnetic order-disorder transition 
occurring at T = 0. In the range 0 < A < A,, the correlation length is finite; this is very 
different from that given by the modified spin-wave method. In the modified spin-wave 
method, the correlation length vanishes in this parameter region. Because the correlation 
length is finite in our calculation, the disordered phase is the spin-liquid phase rather than 
the singlet gas phase [ 1 I]. This conclusion is consistent with that obtained by the series 
expansion method [12]. 

The calculated intralayer and interlayer nearest-neighbour spin-spin correlation are 
shown in  figure 6 and figure 7, respectively. At A = 0, we obtain correctly the values 
of 0 and -0.75 for the intralayer and interlayer spin-spin correlations. At critical coupling, 
the value of the interlayer spin-spin correlation is -0.685; it  is slightly smaller than the 
value of -0.645 given by the modified spin-wave method [ll]. The value of the intralayer 
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0 0 . 2  0 . 4  0.6 0.8 1.0 

A/& 
Figure 7. The interlayer nearest-neighbour spin-spin correlation ( S l i S z , )  as a function of .I,&. 

spin-spin correlation is finite in the disordered phase, which is different from that obtained 
by the modified spin-wave method in which the value is zero. 

4. Summary 

In this paper, we have investigated the properties of the disordered ground state of the 
doublelayer Heisenberg antiferromagnet with spin-; in the bond operator representation. 
In the mean-field approximation, the spin gap which decreases with increasing ratio of 
the intralayer coupling J and the interlayer coupling J I  is obtained, and it becomes 
zero at A(= J / J I )  = 0.292. The other physical quantities, such as the ground-state 
energy, the spin-wave velocity and stiffness, the correlation length, and the intralayer and 
interlayer nearest-neighbour spin-spin correlation functions, are calculated in the region 
0 c A c A,. The results have shown that both the correlation length and the interlayer 
spin-spin correlation are finite, which is different from that given by the modified spin-wave 
method; the disordered phase is the spin-liquid phase rather than the singlet gas phase. 
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